feATURES

- Sample Rate: 105Msps/80Msps
- 78.2dBFS Noise Floor
- 100dB SFDR
- SFDR $>82 \mathrm{~dB}$ at 250 MHz ($1.5 \mathrm{~V}_{\text {P-p }}$ Input Range)
- PGA Front End ($2.25 \mathrm{~V}_{\text {p-p }}$ or $1.5 \mathrm{~V}_{\text {p-p }}$ Input Range)
- 700MHz Full Power Bandwidth S/H
- Optional Internal Dither
- Optional Data Output Randomizer
- Single 3.3V Supply
- Power Dissipation: 900mW/725mW
- Optional Clock Duty Cycle Stabilizer
- Out-of-Range Indicator
- Pin-Compatible Family

105Msps: LTC2207 (16-Bit), LTC2207-14 (14-Bit)
80Msps: LTC2206 (16-Bit), LTC2206-14 (14-Bit)
65Msps: LTC2205 (16-Bit), LTC2205-14 (14-Bit)
40Msps: LTC2204 (16-Bit)
25Msps: LTC2203 (16-Bit) Single-Ended Clock 10Msps: LTC2202 (16-Bit) Single-Ended Clock

- 48 -Pin $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ QFN Package

APPLICATIOOS

- Telecommunications
- Receivers
- Cellular Base Stations
- Spectrum Analysis
- Imaging Systems
- ATE

DESCRIPTIOn

The LTC ${ }^{\circledR} 2207 /$ /LTC2206 are 105Msps/80Msps, sampling 16-bit A/D converters designed for digitizing high frequency, wide dynamic range signals up to input frequencies of 700 MHz . The input range of the ADC can be optimized with the PGA front end.

The LTC2207/LTC2206 are perfect for demanding communications applications, with AC performance that includes 78.2dB Noise Floor and 100dB spurious free dynamic range (SFDR). Ultralow jitter of 80fs ${ }_{\text {rms }}$ allows undersampling of high input frequencies with excellent noise performance. Maximum DC specs include ± 4 LSB INL, ± 1 LSB DNL (no missing codes) over temperature.
A separate output power supply allows the CMOS output swing to range from 0.5 V to 3.6 V .
The ENC+ and ENC- inputs may be driven differentially or single-ended with a sine wave, PECL, LVDS, TLL or CMOS inputs. An optional clock duty cycle stabilizer allows high performance at full speed with a wide range of clock duty cycles.
$\boldsymbol{\boxed { \top }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

LTC2207: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=14.8 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,105 \mathrm{Msps}$

LTC2207/LTC2206

ABSOLUTE MAXIMUM RATIOGS
$0 V_{D D}=V_{D D}($ Notes 1, 2)
Supply Voltage (VD)
\qquad-0.3 V to 4 V
Digital Output Ground Voltage (OGND)

\qquad
-0.3 V to 1 V
Analog Input Voltage (Note 3)

\qquad
-0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Digital Input Voltage - 0.3 V to ($\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$)
Digital Output Voltage

\qquad -0.3 V to $\left(0 \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$Power Dissipation
\qquad2000 mW
Operating Temperature RangeLTC2207C/LTC2206C
\qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2207I/LTC2206I

\qquad
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Digital Output Supply Voltage (OVDD)-0.3V to 4V

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC2207CUK\#PBF	LTC2207CUK\#TRPBF	LTC2207UK	48 -Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic Plastic QFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2206CUK\#PBF	LTC2206CUK\#TRPBF	LTC2206UK	48 -Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic Plastic QFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC2207IUK\#PBF	LTC2207IUK\#TRPBF	LTC2207UK	48 -Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LTC2206IUK\#PBF	LTC2206IUK\#TRPBF	LTC2206UK	48 -Lead $(7 \mathrm{~mm} \times 7 \mathrm{~mm})$ Plastic Plastic QFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

COПVERTER CHRRACTERISTICS The • denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
Integral Linearity Error	Differential Analog Input (Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 1.2	± 4	LSB
Integral Linearity Error	Differential Analog Input (Note 5)	\bullet	1.5	± 4.5	LSB
Differential Linearity Error	Differential Analog Input	\bullet	± 0.3	± 1	LSB
Offset Error	(Note 6)	\bullet	± 1	± 8.5	mV
Offset Drift			± 10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Error	External Reference	\bullet	± 0.2	± 1.5	\%FS
Full-Scale Drift	Internal Reference External Reference		$\begin{aligned} & \pm 30 \\ & \pm 15 \end{aligned}$		$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\mathrm{C}} \end{aligned}$
Transition Noise			2.8		$\mathrm{LSB}_{\text {RMS }}$
					$22076 \mathrm{ffc}^{\text {c }}$
$?$					NEAR

A MALOG InPUT The e denotes the speciications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Analog Input Range ($\left.\mathrm{AlN}^{+}-\mathrm{AlN}^{-}\right)$	$3.135 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.465 \mathrm{~V}$	\bullet		5 to 2.25		VP-P
$\mathrm{V}_{\text {IN }}, \mathrm{CM}$	Analog Input Common Mode	Differential Input (Note 7)	\bullet	1	1.25	1.5	V
IN	Analog Input Leakage Current	OV $\leq \mathrm{A}_{\text {IN }}{ }^{+}, \mathrm{AIN}^{-} \leq \mathrm{V}_{\text {DD }}$ (Note 10)	\bullet			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SENSE }}$	SENSE Input Leakage Current	$\mathrm{OV} \leq$ SENSE $\leq \mathrm{V}_{\mathrm{DD}}$ (Note 11)	\bullet	-3		3	$\mu \mathrm{A}$
$\mathrm{I}_{\text {MODE }}$	MODE Pin Pull-Down Current to GND				10		$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance	Sample Mode ENC ${ }^{+}$< ENC ${ }^{-}$ Hold Mode ENC ${ }^{+}$> ENC ${ }^{-}$			$\begin{aligned} & 6.7 \\ & 1.8 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{pF}} \\ & \mathrm{pF} \end{aligned}$
t_{AP}	Sample-and-Hold Acquisition Delay Time				1		ns
$\mathrm{t}_{\text {JITER }}$	Sample-and-Hold Acquisition Delay Time Jitter				80		$\mathrm{fS}_{\text {RMS }}$
CMRR	Analog Input Common Mode Rejection Ratio	$1 \mathrm{~V}<\left(\mathrm{A}_{\text {IN }}{ }^{+}=\mathrm{AIN}^{-}\right)<1.5 \mathrm{~V}$			80		dB
BW-3dB	Full Power Bandwidth	$\mathrm{R}_{S} \leq 25 \Omega$			700		MHz

DYПAMIC ACCURACY The • denotes the specifications which apply over the full operating temperature range,
otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	$\begin{aligned} & \text { LTC2206 } \\ & \text { TYP } \end{aligned}$	MAX	MIN	$\begin{aligned} & \text { LTC2207 } \\ & \text { TYP } \end{aligned}$	MAX	UNITS
SNR	Signal-to-Noise Ratio	5 MHz Input (2.25V Range, $\mathrm{PGA}=0$) 5 MHz Input (1.5V Range, $\mathrm{PGA}=1$)			$\begin{aligned} & 77.9 \\ & 75.5 \end{aligned}$			$\begin{aligned} & 77.9 \\ & 75.5 \end{aligned}$		$\begin{aligned} & \mathrm{dBFS} \\ & \text { dBFS } \end{aligned}$
		15 MHz Input (2.25V Range, PGA = 0), 15 MHz Input (2.25V Range, $\mathrm{PGA}=0$) 15 MHz Input (1.5V Range, PGA = 1)	-	$\begin{aligned} & 76.5 \\ & 76.2 \end{aligned}$	$\begin{aligned} & 77.8 \\ & 77.5 \\ & 75.4 \end{aligned}$		$\begin{aligned} & 76.5 \\ & 76.2 \end{aligned}$	$\begin{aligned} & 77.8 \\ & 77.5 \\ & 75.4 \end{aligned}$		dBFS dBFS dBFS
		70 MHz Input (2.25V Range, $\mathrm{PGA}=0$) 70MHz Input (1.5V Range, PGA = 1)			$\begin{aligned} & 77.5 \\ & 75.3 \end{aligned}$			$\begin{aligned} & 77.5 \\ & 75.3 \end{aligned}$		dBFS dBFS
		140 MHz Input (2.25V Range, PGA = 0) 140MHz Input (1.5V Range, PGA = 1), 140MHz Input (1.5V Range, PGA = 1)	-	$\begin{array}{\|l\|} 73.8 \\ 73.4 \end{array}$	$\begin{aligned} & 76.7 \\ & 74.8 \\ & 74.5 \end{aligned}$		$\begin{array}{\|l\|} 73.8 \\ 73.4 \end{array}$	$\begin{aligned} & 76.7 \\ & 74.8 \\ & 74.5 \end{aligned}$		$\begin{aligned} & \text { dBFS } \\ & \text { dBFS } \\ & \text { dBFS } \end{aligned}$
		170 MHz Input (2.25V Range, PGA $=0$) 170 MHz Input (1.5V Range, $\mathrm{PGA}=1$)			$\begin{aligned} & 76.2 \\ & 75.4 \end{aligned}$			$\begin{aligned} & 76.2 \\ & 75.4 \end{aligned}$		dBFS dBFS
SFDR	Spurious Free Dynamic Range $2^{\text {nd }}$ or $3^{\text {rd }}$ Harmonic	5 MHz Input (2.25V Range, $\mathrm{PGA}=0$) 5 MHz Input (1.5 V Range, $\mathrm{PGA}=1$)			$\begin{aligned} & 100 \\ & 100 \end{aligned}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
		$\begin{aligned} & 15 \mathrm{MHz} \text { Input (2.25V Range, PGA = 0), } \\ & 15 \mathrm{MHz} \text { Input (2.25V Range, PGA }=0 \text {) } \\ & 15 \mathrm{MHz} \text { Input (} 1.5 \mathrm{~V} \text { Range, } \mathrm{PGA}=1 \text {) } \end{aligned}$	-	$\begin{aligned} & 87 \\ & 86 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \\ & 100 \end{aligned}$		$\begin{array}{\|l\|l} 88 \\ 87 \end{array}$	$\begin{aligned} & 95 \\ & 95 \\ & 100 \end{aligned}$		dBC dBC dBC
		$\begin{aligned} & \text { 70MHz Input (2.25V Range, PGA = 0) } \\ & 70 \mathrm{MHz} \text { Input (} 1.5 \mathrm{~V} \text { Range, } \mathrm{PGA}=1 \text {) } \end{aligned}$			$\begin{aligned} & 90 \\ & 95 \end{aligned}$			$\begin{aligned} & 90 \\ & 95 \end{aligned}$		$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
		140 MHz Input (2.25V Range, PGA = 0) 140MHz Input (1.5V Range, PGA = 1), 140 MHz Input (1.5 V Range, $\mathrm{PGA}=1$)	-	$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & 89 \end{aligned}$		$\begin{aligned} & 84 \\ & 83 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \\ & 89 \end{aligned}$		dBc $d B C$ $d B C$
		170 MHz Input (2.25V Range, PGA = 0) 170 MHz Input (1.5V Range, PGA = 1)			$\begin{aligned} & 82 \\ & 86 \end{aligned}$			$\begin{aligned} & 82 \\ & 86 \end{aligned}$		$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$

LTC2207/LTC2206

DYПAMIC ACCURACY The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{I N}=-1 \mathrm{dBFS}$ unless otherwise noted. (Note 4)

LTC2207/LTC2206

COMmON MODE BIAS CHARACTERISTICS
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

PARAMETER	CONDITIONS	MIN	TYP	MAX
$V_{\text {CM }}$ Output Voltage	$I_{\text {OUT }}=0$	1.15	1.25	1.35
$V_{\text {CM }}$ Output Tempco	$I_{\text {OUT }}=0$	40	V	
$V_{\text {CM L }}$ Line Regulation	$3.135 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 3.465 \mathrm{~V}$	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
$\mathrm{V}_{\text {CM }}$ Output Resistance	$-1 \mathrm{~mA} \leq\left\|\mathrm{I}_{\text {OUT }}\right\| \leq 1 \mathrm{~mA}$	1	mV / V	

PICITAL IPPUTS APD PICITALOUTPUTS The o denotes the specifications which apply over the

 full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| ENCODE INPUTS (ENC ${ }^{+}$, ENC | | | | | | |

LOGIC INPUTS (DITH, PGA, SHDN, RAND)

$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{D D}=3.3 \mathrm{~V}$	\bullet	2	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$V_{D D}=3.3 \mathrm{~V}$	\bullet	0.8	V
In	Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet	± 10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	(Note 7)		1.5	pF

LOGIC OUTPUTS
$0 V_{D D}=3.3 V$

V_{OH}	High Level Output Voltage	$V_{D D}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{0}=-10 \mu \mathrm{~A} \\ & I_{0}=-200 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{array}{cc} & 3.299 \\ 3.1 & 3.29\end{array}$		V
V_{OL}	Low Level Output Voltage	$V_{D D}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{0}=-10 \mu \mathrm{~A} \\ & I_{0}=-200 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{gathered} 0.01 \\ 0.1 \end{gathered}$	0.4	V
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-50		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$			50		mA

$0 \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}$

| $V_{O H}$ | High Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $I_{0}=-200 \mu \mathrm{~A}$ | 2.49 | V |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $V_{O L}$ | Low Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $I_{0}=1.60 \mathrm{~mA}$ | 0.1 | V |

$0 \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}$

| $V_{O H}$ | High Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $I_{0}=-200 \mu \mathrm{~A}$ | 1.79 | V |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $V_{O L}$ | Low Level Output Voltage | $V_{D D}=3.3 \mathrm{~V}$ | $I_{0}=1.60 \mathrm{~mA}$ | 0.1 | V |

LTC2207/LTC2206

POUER REQUIREMEПTS The • denotes the specifications which apply over the full operating temperature
range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{A}_{\text {IN }}=-1 \mathrm{dBFS}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LTC2206			LTC2207			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$V_{D D}$	Analog Supply Voltage		-	3.135	3.3	3.465	3.135	3.3	3.465	V
$\mathrm{P}_{\text {SHDN }}$	Shutdown Power	SHDN $=\mathrm{V}_{\text {DD }}$			0.2			0.2		mW
OV ${ }_{\text {DD }}$	Output Supply Voltage		\bullet	0.5		3.6	0.5		3.6	V
lvDD	Analog Supply Current	DC Input	\bullet		220	265		273	325	mA
PDIS	Power Dissipation	DC Input	\bullet		725	875		900	1,073	mW

TIMInG CHARACTERISTICS The e denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LTC2206			LTC2207			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
f_{s}	Sampling Frequency	(Note 9)	\bullet	1		80	1		105	MHz
tL	ENC Low Time	Duty Cycle Stabilizer Off (Note 7) Duty Cycle Stabilizer On (Note 7)	\bullet	$\begin{aligned} & 5.94 \\ & 4.06 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 4.52 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 4.762 \\ & 4.762 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	ns
$\mathrm{tH}^{\text {H}}$	ENC High Time	Duty Cycle Stabilizer Off (Note 7) Duty Cycle Stabilizer On (Note 7)	\bullet	$\begin{aligned} & 5.94 \\ & 4.06 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 6.25 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 4.52 \\ & 3.10 \end{aligned}$	$\begin{aligned} & 4.762 \\ & 4.762 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	ns
$t_{\text {AP }}$	Sample-and-Hold Aperture Delay				-0.7			-0.7		ns
t_{D}	ENC to DATA Delay	(Note 7)	\bullet	1.3	2.7	4	1.3	2.7	4	ns
t_{c}	ENC to CLKOUT Delay	(Note 7)	\bullet	1.3	2.7	4	1.3	2.7	4	ns
$\mathrm{t}_{\text {SkEW }}$	DATA to CLKOUT Skew	(tc-to) (Note 7)	\bullet	-0.6	0	0.6	-0.6	0	0.6	ns
t_{OE}	DATA Access time Bus Relinquish time	$\begin{aligned} & \hline \mathrm{CL}=5 \mathrm{pF} \text { (Note 7) } \\ & \text { (Note 7) } \end{aligned}$			$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns ns
Pipeline Latency					7			7		Cycles

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: All voltage values are with respect to GND, with GND and OGND shorted (unless otherwise noted).
Note 3: When these pin voltages are taken below GND or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents of greater than 100 mA below $G N D$ or above V_{DD} without latchup.
Note 4: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=105 \mathrm{MHz}($ LTC2207 $), 80 \mathrm{MHz}$ (LTC2206) differential ENC $^{+} /$ENC $^{-}=2 \mathrm{~V}_{\text {p-p }}$ sine wave with 1.6 V common mode, input range $=2.25 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ with differential drive $(\mathrm{PGA}=0)$, unless otherwise specified.
Note 5: Integral nonlinearity is defined as the deviation of a code from a "best fit straight line" to the transfer curve. The deviation is measured from the center of the quantization band.

Note 6: Offset error is the offset voltage measured from $-1 / 2$ LSB when the output code flickers between 0000000000000000 and 111111111111 1111 in 2's complement output mode.
Note 7: Guaranteed by design, not subject to test.
Note 8: $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{SAMPLE}}=105 \mathrm{MHz}($ LTC2207 $)$ or 80MHz (LTC2206), input range $=2.25 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ with differential drive.
Note 9: Recommended operating conditions.
Note 10: The dynamic current of the switched capacitors analog inputs can be large compared to the leakage current and will vary with the sample rate.
Note 11: Leakage current will have higher transient current at power up. Keep drive resistance at or below $1 \mathrm{k} \Omega$.

TIMING DIAGRAM

TYPICAL PGRFORMAOCE CHARACTERISTICS

LTC2207: 128K Point FFT, $\mathrm{f}_{\mathrm{IN}}=4.93 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,105 \mathrm{Msps}$

LTC2207: DNL, 105Msps

22076 G02
LTC2207: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=14.8 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=0,105 \mathrm{Msps}$

LTC2207: AC Grounded Input Histogram, 105Msps

LTC2207: 64K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=14.8 \mathrm{MHz},-10 \mathrm{dBFS}$,
PGA $=0,105 \mathrm{Msps}$

LTC2207/LTC2206

TYPICAL PGRFORMANCE CHARACTERISTICS

LTC2207: SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{PGA}=0$, Dither "Off", 105Msps

LTC2207: 64K Point 2-Tone FFT, $f_{\mathrm{IN}}=14.8 \mathrm{MHz}$ and 18.6 MHz , $-15 \mathrm{dBFS}, \mathrm{PGA}=0,105 \mathrm{Msps}$

LTC2207: 128K Point FFT, $\mathrm{f}_{\mathrm{IN}}=70.1 \mathrm{MHz},-20 \mathrm{dBFS}$, PGA $=0,105 \mathrm{Msps}$

LTC2207: SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{PGA}=0$, Dither "On", 105Msps

LTC2207: 64K FFT, $\mathrm{f}_{\mathrm{IN}}=70.1 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,105 \mathrm{Msps}$

LTC2207: 128K Point FFT, $\mathrm{f}_{\mathrm{IN}}=70.1 \mathrm{MHz},-20 \mathrm{dBFS}$, PGA = 0, Dither "On", 105Msps

LTC2207: 64K Point 2-Tone FFT, $f_{\mathrm{IN}}=14.8 \mathrm{MHz}$ and 18.6 MHz , $-7 d B F S$, PGA $=0,105 \mathrm{Msps}$

LTC2207: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=70.1 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=1,105$ Msps

LTC2207: 64K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=140.2 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=1,105 \mathrm{Msps}$

TYPICAL PERFORMANCE CHARACTERISTICS

LTC2207: SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}, \mathrm{PGA}=1$, Dither "Off", 105Msps

LTC2207: 64K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=250.2 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,105 \mathrm{M}$ sps

LTC2207: SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=140 \mathrm{MHz}, \mathrm{PGA}=1$,
Dither "On", 105Msps

22076 G17
LTC2207: SFDR (HD2 and HD3) vs Input Frequency, 105Msps

LTC2207: 64K Point FFT,
$\mathrm{fin}_{\mathrm{IN}}=170.2 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=0,105 \mathrm{Msps}$

LTC2207: SNR vs Input Frequency, 105Msps

LTC2207: 5MHz SNR and SFDR vs Sample Rate, 105Msps

LTC2207: SNR and SFDR vs Supply Voltage (VDD), $\mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, 105 \mathrm{Msps}$

LTC2207/LTC2206

TYPICAL PERFORMANCE CHARACTERISTICS

LTC2207: SNR and SFDR
vs Duty Cycle, 105Msps

LTC2207: IVDD vs Sample Rate, 5 MHz Sine Wave, -1dBFS, 105Msps

LTC2206: INL, 80Msps

LTC2206: 128K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=4.93 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,80 \mathrm{Msps}$

LTC2206: DNL, 80Msps

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{N}}=10.1 \mathrm{MHz},-1 \mathrm{dBFS}$, $\mathrm{PGA}=0,80 \mathrm{Msps}$

LTC2206: 64K Point AC Grounded Histogram, 80Msps

LTC2206: 128K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=10.1 \mathrm{MHz},-20 \mathrm{dBFS}$,
PGA = 0, Dither "Off", 80Msps

TYPICAL PGRFORmANCE CHARACTERISTICS

LTC2206: 128K Point FFT, $\mathrm{f}_{\mathrm{I}}=10.1 \mathrm{MHz},-20 \mathrm{dBFS}$, PGA = 0, Dither "On", 80Msps

22076 G32
LTC2206: SFDR vs Input Level
$f_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{PGA}=0$,
Dither "On", 80Msps

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{N}}=25.1 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,80 \mathrm{Msps}$

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=15.1 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=0,80 \mathrm{Msps}$

22076 G33
LTC2206: 64K Point 2-Tone FFT, $\mathrm{f}_{\mathrm{IN}}=14.8 \mathrm{MHz}$ and 18.6 MHz , $-7 d B F S$, PGA $=0,80 \mathrm{Msps}$

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=70.2 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=0,80 \mathrm{Msps}$

LTC2206: SFDR vs Input Level,
$\mathrm{f}_{\mathrm{IN}}=15 \mathrm{MHz}, \mathrm{PGA}=0,80 \mathrm{Msps}$

22076 G34
LTC2206: 64K Point 2-Tone FFT, $\mathrm{f}_{\mathrm{IN}}=14.8 \mathrm{MHz}$ and 18.6 MHz , $-15 d B F S$, PGA $=0,80 \mathrm{Msps}$

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{N}}=70.2 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=1,80 \mathrm{Msps}$

LTC2207/LTC2206

TYPICAL PGRFORMANCE CHARACTERISTICS

LTC2206: 64K Point 2-Tone FFT, $\mathrm{f}_{\mathrm{IN}}=69.2 \mathrm{MHz}$ and 76.5 MHz , $-7 d B F S$, PGA $=0,80 \mathrm{Msps}$

LTC2206: SFDR vs Input Level, $\mathrm{f}_{\mathrm{IN}}=140.2 \mathrm{MHz}, \mathrm{PGA}=0$, Dither "Off", 80Msps

LTC2206: 64K Point FFT,
$\mathrm{f}_{\mathrm{IN}}=250.2 \mathrm{MHz},-1 \mathrm{dBFS}$,
PGA $=1,80 \mathrm{Msps}$

LTC2206: 64K Point 2-Tone FFT, $\mathrm{f}_{\mathrm{IN}}=69.2 \mathrm{MHz}$ and 76.5 MHz , $-15 d B F S$, PGA $=0,80 \mathrm{Msps}$

LTC2206: SFDR vs Input Level, $\mathrm{f}_{\mathrm{N}}=140.2 \mathrm{MHz}, \mathrm{PGA}=0$, Dither "On", 80Msps

LTC2206: SFDR (HD2 and HD3) vs Input Frequency, 80Msps

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=140.2 \mathrm{MHz},-1 \mathrm{dBFS}$, $\mathrm{PGA}=\mathbf{0}, 80 \mathrm{Msps}$

LTC2206: 64K Point FFT, $\mathrm{f}_{\mathrm{IN}}=170.2 \mathrm{MHz},-1 \mathrm{dBFS}$, PGA $=1,80 \mathrm{Msps}$

22076 G46
LTC2206: SNR vs Input Frequency, 80Msps

TYPICAL PERFORMANCE CHARACTERISTICS

13

PIn functions

SENSE (Pin 1): Reference Mode Select and External Reference Input. Tie SENSE to $V_{D D}$ to select the internal 2.5 V bandgap reference. An external reference of 2.5 V or 1.25 V may be used; both reference values will set a full-scale ADC range of $2.25 \mathrm{~V}(\mathrm{PGA}=0)$.
V $_{\text {CM }}$ (Pin2): 1.25V Output. Optimum voltage for inputcommon mode. Must be bypassed to ground with a minimum of 2.2μ F. Ceramic chip capacitors are recommended.

VDD (Pins 3, 4, 12, 13, 14): 3.3V Analog Supply Pin. Bypass to GND with $0.1 \mu \mathrm{~F}$ ceramic chip capacitors.
GND (Pins 5, 8, 11, 15, 48, 49): ADC Power Ground.
$\mathrm{A}_{\mathrm{IN}^{+}}$(Pin 6): Positive Differential Analog Input.
$A_{I N}{ }^{-}$(Pin 7): Negative Differential Analog Input.
ENC ${ }^{+}$(Pin 9): Positive Differential Encode Input. The sampled analog input is held on the rising edge of ENC ${ }^{+}$. Internally biased to 1.6 V through a $6.2 \mathrm{k} \Omega$ resistor. Output data can be latched on the rising edge of ENC ${ }^{+}$.

ENC- (Pin 10): Negative Differential Encode Input. The sampled analog input is held on the falling edge of ENC‥ Internally biased to 1.6 V through a $6.2 \mathrm{k} \Omega$ resistor. Bypass to ground with a $0.1 \mu \mathrm{~F}$ capacitor for a single-ended Encode signal.
SHDN (Pin 16): Power Shutdown Pin. SHDN = low results in normal operation. SHDN = high results in powered down analog circuitry and the digital outputs are placed in a high impedance state.
DITH (Pin 17): Internal Dither Enable Pin. DITH = Iow disables internal dither. DITH = high enables internal dither. Refer to Internal Dither section of this data sheet for details on dither operation.
D0-D15 (Pins 18-22, 26-28, 32-35 and 39-42): Digital Outputs. D15 is the MSB.

OGND (Pins 23, 31 and 38): Output Driver Ground.

OV ${ }_{\text {DD }}$ (Pins 24, 25, 36, 37): Positive Supply for the Output Drivers. Bypass to ground with $0.1 \mu \mathrm{~F}$ capacitor.
CLKOUT- (Pin 29): Data Valid Output. CLKOUT${ }^{-}$will toggle at the sample rate. Latch the data on the falling edge of CLKOUT-.

CLKOUT+ (Pin 30): Inverted Data Valid Output. CLKOUT+ will toggle at the sample rate. Latch the data on the rising edge of CLKOUT ${ }^{+}$.

OF (Pin 43): Over/Under Flow Digital Output. OF is high when an over or under flow has occurred.
$\overline{\mathrm{OE}}$ (Pin 44): Output Enable Pin. Low enables the digital output drivers. High puts digital outputs in Hi-Z state.
MODE (Pin 45): Output Format and Clock Duty Cycle Stabilizer Selection Pin. Connecting MODE to OV selects offset binary output format and disables the clock duty cycle stabilizer. Connecting MODE to $1 / 3 \mathrm{~V}_{\text {DD }}$ selects offset binary output format and enables the clock duty cycle stabilizer. Connecting MODEto $2 / 3 \mathrm{~V}_{\mathrm{DD}}$ selects 2's complement output format and enables the clock duty cycle stabilizer. Connecting MODE to VDD selects 2's complement output format and disables the clock duty cycle stabilizer.

RAND (Pin 46): Digital Output Randomization Selection Pin. RAND low results in normal operation. RAND high selects D1-D15 to be EXCLUSIVE-ORed with D0 (the LSB). The output can be decoded by again applying an XOR operation between the LSB and all other bits. This mode of operation reduces the effects of digital output interference.
PGA(Pin 47): Programmable GainAmplifierControl Pin.Low selects a front-end gain of 1, input range of $2.25 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ High selects a front-end gain of 1.5 , input range of $1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
GND (Exposed Pad, Pin 49): ADC Power Ground. The exposed pad on the bottom of the package must be soldered to ground.

BLOCK DIAGRAM

Figure 1. Functional Block Diagram

LTC2207/LTC2206

operation

DYNAMIC PERFORMANCE

Signal-to-Noise Plus Distortion Ratio

The signal-to-noise plus distortion ratio $[\mathrm{S} /(\mathrm{N}+\mathrm{D})]$ is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components at the ADC output. The output is band limited to frequencies above DC to below half the sampling frequency.

Signal-to-Noise Ratio

The signal-to-noise (SNR) is the ratio between the RMS amplitude of the fundamental input frequency and the RMS amplitude of all other frequency components, except the first five harmonics.

Total Harmonic Distortion

Total harmonic distortion is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
\left.T H D=-20 \log \left(\sqrt{\left(V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots V_{N}^{2}\right.}\right) / V_{1}\right)
$$

where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{N} are the amplitudes of the second through nth harmonics.

Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.

If two pure sine waves of frequencies fa and fb are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at the sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$, where m and $\mathrm{n}=$ $0,1,2,3$, etc. For example, the 3rd order IMD terms include $(2 f a+f b)$, $(f a+2 f b)$, $(2 f a-f b)$ and (fa $-2 f b)$. The 3rd order IMD is defined as the ration of the RMS value of either input tone to the RMS value of the largest 3rd order IMD product.

Spurious Free Dynamic Range (SFDR)

The ratio of the RMS input signal amplitude to the RMS value of the peak spurious spectral component expressed in dBc. SFDR may also be calculated relative to full scale and expressed in dBFS.

Full Power Bandwidth

The full power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3 dB for a full-scale input signal.

Aperture Delay Time

The time from when a rising ENC ${ }^{+}$equals the ENC ${ }^{-}$voltage to the instant that the input signal is held by the sample-and-hold circuit.

Aperture Delay Jitter

The variation in the aperture delay time from conversion to conversion. This random variation will result in noise when sampling an AC input. The signal to noise ratio due to the jitter alone will be:

$$
\text { SNR }_{J I T T E R}=-20 \log \left(2 \pi \bullet f_{I N} \bullet t_{J I T E R}\right)
$$

APPLICATIONS INFORMATION

CONVERTER OPERATION
The LTC2207/LTC2206 areCMOS pipelined multistep converters with a front-end PGA. As shown in Figure 1, the converterhas five pipelined ADC stages; a sampled analog input will result in a digitized value seven cycles clocklater (seethe Timing Diagram section). The analog input is differential for improved common mode noise immunity and to maximize the input range. Additionally, the differential input drive will reduce even order harmonics of the sample and hold circuit. The encode input is also differential for improved common mode noise immunity.
The LTC2207/LTC2206 have two phases of operation, determined by the state of the differential ENC $^{+} /$ENC $^{-}$ input pins. For brevity, the text will refer to ENC ${ }^{+}$greater than ENC ${ }^{-}$as ENC high and ENC ${ }^{+}$less than ENC ${ }^{-}$as ENC Iow.

Each pipelined stage shown in Figure 1 contains an ADC, a reconstruction DAC and an interstage amplifier. In operation, the ADC quantizes the input to the stage and the quantized value is subtracted from the input by the DAC to produce a residue. The residue is amplified and output by the residue amplifier. Successive stages operate out-of-phase so that when odd stages are outputting
their residue, the even stages are acquiring that residue and vice versa.

When ENC is low, the analog input is sampled differentially directly onto the input sample-and-hold capacitors, inside the "input S/H" shown in the Block Diagram. At the instant that ENC transitions from low to high, the voltage on the sample capacitors is held. While ENC is high, the held input voltage is buffered by the S/H amplifier which drives the first pipelined ADC stage. The firststage acquires the output of the S/H amplifier during the high phase of ENC. When ENC goes back low, the first stage produces its residue which is acquired by the second stage. At the same time, the input S / H goes back to acquiring the analog input. When ENC goes high, the second stage produces its residue which is acquired by the third stage. An identical process is repeated for the third and fourth stages, resulting in a fourth stage residue that is sent to the fifth stage for final evaluation.

Each ADC stage following the first has additional range to accommodate flash and amplifier offset errors. Results from all of the ADC stages are digitally delayed such that the results can be properly combined in the correction logic before being sent to the output buffer.

APPLICATIONS InFORMATION

SAMPLE/HOLD OPERATION AND INPUT DRIVE

Sample/Hold Operation

Figure 2 shows an equivalent circuit for the LTC2207/ LTC2206 CMOS differential sample and hold. The differential analog inputs are sampled directly onto sampling capacitors (Csample) through NMOS transistors. The capacitors shown attached to each input (CPARASITIC) are the summation of all other capacitance associated with each input.
During the sample phase when ENC is low, the NMOS transistors connect the analog inputs to the sampling capacitors and they charge to, and track the differential input voltage. When ENC transitions from low to high, the sampled input voltage is held on the sampling capacitors. During the hold phase when ENC is high, the sampling capacitors are disconnected from the input and the held voltage is passed to the ADC core for processing. As ENC transitions for high to low, the inputs are reconnected to the sampling capacitors to acquire a new sample. Since the sampling capacitors still hold the previous sample, a charging glitch proportional to the change in voltage between samples will be seen at this time. If the change between the last sample and the new sample is small, the charging glitch seen at the input will be small. If the input change is large, such as the change seen with input frequencies near Nyquist, then a larger charging glitch will be seen.

Common Mode Bias

The ADC sample-and-hold circuit requires differential drive to achieve specified performance. Each input should swing $\pm 0.5625 \mathrm{~V}$ forthe 2.25 V range ($\mathrm{PGA}=0$) or $\pm 0.375 \mathrm{~V}$ for the 1.5 V range $(\mathrm{PGA}=1)$, around a common mode voltage of 1.25 V . The V_{CM} output pin (Pin 2) is designed to provide the common mode bias level. V_{CM} can be tied directly to the center tap of a transformer to set the DC input level or as a reference level to an op amp differential driver circuit. The V_{CM} pin must be bypassed to ground close to the ADC with $2.2 \mu \mathrm{~F}$ or greater.

Input Drive Impedence

As with all high performance, high speed ADCs the dynamic performance of the LTC2207/LTC2206 can be influenced by the input drive circuitry, particularly the second and third harmonics. Source impedance and input reactance can influence SFDR. At the falling edge of ENC the sample-and-hold circuit will connect the 4.9 pF sampling capacitor to the input pin and start the sampling period. The sampling period ends when ENC rises, holding the sampled input on the sampling capacitor. Ideally, the input circuitry should be fast enough to fully charge the sampling capacitor during the sampling period $1 /\left(2 \mathrm{~F}_{\text {ENCODE }}\right)$; however, this is not always possible and the incomplete settling may degrade the SFDR. The sampling glitch has been designed to be as linear as possible to minimize the effects of incomplete settling.
For the best performance it is recommended to have a source impedence of 100Ω or less for each input. The source impedence should be matched for the differential inputs. Poor matching will result in higher even order harmonics, especially the second.

Figure 2. Equivalent Input Circuit

APPLICATIONS INFORMATION

INPUT DRIVE CIRCUITS

Input Filtering

A first order RC lowpass filter at the input of the ADC can serve two functions: limit the noise from input circuitry and provide isolation from ADC S/H switching. The LTC2207/LTC2206 have a very broadband S/H circuit, DC to 700 MHz ; it can be used in a wide range of applications; therefore, it is not possible to provide a single recommended RC filter.

Figures 3, 4a and 4b show three examples of input RC filtering at three ranges of input frequencies. In general it is desirable to make the capacitors as large as can be tolerated-this will help suppress random noise as well as noise coupled from the digital circuitry. The LTC2207/ LTC2206 do not require any input filter to achieve data sheet specifications; however, no filtering will put more stringent noise requirements on the input drive circuitry.

Transformer Coupled Circuits

Figure 3 shows the LTC2207/LTC2206 being driven by an RF transformer with a center-tapped secondary. The secondary center tap is DC biased with V_{CM}, setting the ADC input signal at its optimum DC level. Figure 3 shows a $1: 1$ turns ratio transformer. Other turns ratios can be used; however, as the turns ratio increases so does the impedance seen by the ADC. Source impedance greater than 50Ω can reduce the input bandwidth and increase

high frequency distortion. A disadvantage of using a transformer is the loss of low frequency response. Most small RF transformers have poor performance at frequencies below 1 MHz .

Center-tapped transformers provide a convenient means of DC biasing the secondary; however, they often show poor balance at high input frequencies, resulting in large 2nd order harmonics.

Figure 4a shows transformer coupling using a transmission line balun transformer. This type of transformer has much better high frequency response and balance than flux coupled center tap transformers. Coupling capacitors are added at the ground and input primary terminals to allow the secondary terminals to be biased at 1.25 V . Figure $4 b$ shows the same circuit with components suitable for higher input frequencies.

Figure 4a. Using a Transmission Line Balun Transformer. Recommended for Input Frequencies from 100 MHz to 250 MHz

Figure 4b. Using a Transmission Line Balun Transformer.
Recommended for Input Frequencies from 250MHz to 500MHz

LTC2207/LTC2206

APPLICATIONS INFORMATION

Direct Coupled Circuits

Figure 5 demonstrates the use of a differential amplifier to convert a single ended input signal into a differential input signal. The advantage of this method is that it provides low frequency input response; however, the limited gain bandwidth of any op amp or closed-loop amplifier will degrade the ADC SFDR athigh inputfrequencies. Additionally, wideband op amps or differential amplifiers tend to have high noise. As a result, the SNR will be degraded unless the noise bandwidth is limited prior to the ADC input.

Reference Operation

Figure 6 shows the LTC2207/LTC2206 reference circuitry consisting of a 2.5 V bandgap reference, a programmable gain amplifier and control circuit. The LTC2207/LTC2206 have three modes of reference operation: Internal Reference, 1.25 V external reference or 2.5 V external reference. To use the internal reference, tie the SENSE pin to V_{DD}. To use an external reference, simply apply either a 1.25 V or 2.5 V reference voltage to the SENSE input pin. Both 1.25 V and 2.5 V applied to SENSE will result in a full-scale range of 2.25 V P-P $(\mathrm{PGA}=0)$. A 1.25 V output V_{CM} is provided for a common mode bias for input drive circuitry. An external bypass capacitor is required for the V_{CM} output. This provides a high frequency low impedance path to ground for internal and external circuitry. This is also the

Figure 5. DC Coupled Input with Differential Amplifier
compensation capacitor for the reference; it will not be stable without this capacitor. The minimum value required for stability is $2.2 \mu \mathrm{~F}$.

The internal programmable gain amplifier provides the internal reference voltage for the ADC. This amplifier has very stringent settling requirements and is not accessible for external use.

The SENSE pin can be driven $\pm 5 \%$ around the nominal 2.5 V or 1.25 V external reference inputs. This adjustment range can be used to trim the ADC gain error or other system gain errors. When selecting the internal reference, the SENSE pin should be tied to $V_{D D}$ as close to the converter as possible. If the sense pin is driven externally it should be bypassed to ground as close to the device as possible with $1 \mu \mathrm{~F}$ (or larger) ceramic capacitor.

PGA Pin

The PGA pin selects between two gain settings for the ADC front-end. $\mathrm{PGA}=0$ selects an input range of $2.25 \mathrm{~V}_{\mathrm{P}}$ p; PGA $=1$ selects an input range of 1.5 V P-p The 2.25 V input range has the best SNR; however, the distortion will be higher for input frequencies above 100 MHz . For applications with high input frequencies, the low input range will have improved distortion; however, the SNR will be 2.4 dB worse. See the Typical Performance Characteristics section of this datasheet.

Figure 6. Reference Circuit

APPLICATIONS INFORMATION

Figure 7. A 2.25V Range ADC with an External 2.5V Reference

T1 = MA/COM ETC1-1-13
RESISTORS AND CAPACITORS
ARE 0402 PACKAGE SIZE
Figure 8b. Transformer Driven Encode

Figure 8a. Equivalent Encode Input Circuit

Figure 9. Single-Ended ENC Drive, Not Recommended for Low Jitter

Figure 10. ENC Drive Using a CMOS to PECL Translator

LTC2207/LTC2206

APPLICATIONS INFORMATION

Driving the Encode Inputs

The noise performance of the LTC2207/LTC2206 can depend on the encode signal quality as much as for the analog input. The encode inputs are intended to be driven differentially, primarily for noise immunity from common mode noise sources. Each input is biased through a 6 k resistor to a 1.6V bias. The bias resistors set the DC operating point for transformer coupled drive circuits and can set the logic threshold for single-ended drive circuits.
Any noise present on the encode signal will result in additional aperture jitter that will be RMS summed with the inherent ADC aperture jitter.

In applications where jitter is critical (high input frequencies), take the following into consideration:

1. Differential drive should be used.
2. Use as large an amplitude possible. If using transformer coupling, use a higher turns ratio to increase the amplitude.
3. If the ADC is clocked with a fixed frequency sinusoidal signal, filter the encode signal to reduce wideband noise.
4. Balance the capacitance and series resistance at both encode inputs such that any coupled noise will appear at both inputs as common mode noise.

The encode inputs have a common mode range of 1.2 V to $V_{D D}$. Each input may be driven from ground to $V_{D D}$ for single-ended drive.

Maximum and Minimum Encode Rates

The maximum encode rate for the LTC2207 is 105Msps. The maximum encode rate for the LTC2206 is 80Msps. For the ADC to operate properly the encode signal should have a $50 \%(\pm 5 \%)$ duty cycle. Each half cycle must be at least 4.52 ns for the LTC2207 internal circuitry to have enough settling time for proper operation. For the LTC2206, each half cycle must be at least 5.94ns. Achieving a precise 50\% duty cycle is easy with differential sinusoidal drive using a transformer or using symmetric differential logic such as PECL or LVDS. When using a single-ended ENCODE signal asymmetric rise and fall times can result in duty cycles that are far from 50%.

An optional clock duty cycle stabilizer can be used if the input clock does not have a 50% duty cycle. This circuit uses the rising edge of ENC pin to sample the analog input. The falling edge of ENC is ignored and an internal falling edge is generated by a phase-locked loop. The input clock duty cycle can vary from 30% to 70% and the clock duty cycle stabilizer will maintain a constant 50% internal duty cycle. If the clock is turned off for a long period of time, the duty cycle stabilizer circuit will require one hundred clock cycles for the PLL to lock onto the input clock. To use the clock duty cycle stabilizer, the MODE pin must be connected to $1 / 3 \mathrm{~V}_{D D}$ or $2 / 3 \mathrm{~V}_{D D}$ using external resistors.

The lower limit of the LTC2207/LTC2206 sample rate is determined by droop of the sample and hold circuits. The pipelined architecture of this ADC relies on storing analog signals on small valued capacitors. Junction leakage will discharge the capacitors. The specified minimum operating frequency for the LTC2207/LTC2206 is 1Msps.

APPLICATIONS INFORMATION

DIGITAL OUTPUTS

Digital Output Buffers

Figure 11 shows an equivalent circuit for a single output buffer. Each buffer is powered by $\mathrm{OV}_{D D}$ and OGND, isolated from the ADC power and ground. The additional N-channel transistor in the output driver allows operation down to low voltages. The internal resistor in series with the output eliminates the need for external damping resistors.

As with all high speed/high resolution converters, the digital output loading can affect the performance. The digital outputs of the LTC2207/LTC2206 should drive a minimum capacitive load to avoid possible interaction between the digital outputs and sensitive input circuitry. The output should be buffered with a device such as a ALVCH16373 CMOS latch. For full speed operation the capacitive load should be kept under 10pF. A resistor in series with the output may be used but is not required since the output buffer has a series resistor of 33Ω on chip.
Lower $\mathrm{OV}_{\mathrm{DD}}$ voltages will also help reduce interference from the digital outputs.

Data Format

The LTC2207/LTC2206 parallel digital output can be selected for offset binary or 2's complement format. The format is selected with the MODE pin. This pin has a four level logic input, centered at $0,1 / 3 \mathrm{~V}_{D D}, 2 / 3 \mathrm{~V}_{\mathrm{DD}}$ and V_{DD}. An external resistor divider can be user to set the $1 / 3 V_{D D}$ and $2 / 3 V_{D D}$ logic levels. Table 1 shows the logic states for the MODE pin.

Figure 11. Equivalent Circuit for a Digital Output Buffer

Table 1. MODE Pin Function

MODE	Output Format	Clock Duty Cycle Stabilizer
$0(G N D)$	Offset Binary	Off
$1 / 3 \mathrm{~V}_{D D}$	Offset Binary	On
$2 / 3 \mathrm{~V}_{\mathrm{DD}}$	2's Complement	On
V_{DD}	2's Complement	Off

Overflow Bit

An overflow output bit (OF) indicates when the converter is over-ranged or under-ranged. A logic high on the OF pin indicates an overflow or underflow.

Output Clock

The ADC has a delayed version of the encode input available as a digital output. Both a noninverted version, CLKOUT+ and an inverted version CLKOUT- are provided. The CLKOUT+/CLKOUT- can be used to synchronize the converter data to the digital system. This is necessary when using a sinusoidal encode. Data can be latched on the rising edge of CLKOUT+ or the falling edge of CLKOUT-. CLKOUT+ falls and CLKOUT- rises as the data outputs are updated.

Figure 12. Functional Equivalent of Digital Output Randomizer

LTC2207/LTC2206

APPLICATIONS InFORMATION

Digital Output Randomizer

Interference from the ADC digital outputs is sometimes unavoidable. Interference from the digital outputs may be from capacitive or inductive coupling or coupling through the ground plane. Even a tiny coupling factor can result in discernible unwanted tones in the ADC output spectrum. By randomizing the digital output before it is transmitted off chip, these unwanted tones can be randomized, trading a slight increase in the noise floor for a large reduction in unwanted tone amplitude.

The digital output is "Randomized" by applying an exclu-sive-OR logic operation between the LSB and all other data output bits. To decode, the reverse operation is applied; that is, an exclusive-OR operation is applied between the LSB and all other bits. The LSB, OF and CLKOUT outputs are not affected. The output Randomizer function is active when the RAND pin is high.

Output Driver Power

Separate output power and ground pins allow the output drivers to be isolated from the analog circuitry. The power supply for the digital output buffers, $\mathrm{OV}_{\mathrm{DD}}$, should be tied to the same power supply as for the logic being driven. For example, if the converter is driving a DSP powered by a 1.8 V supply, then $\mathrm{OV}_{\mathrm{DD}}$ should be tied to that same
1.8 V supply. In CMOS mode $\mathrm{OV}_{\mathrm{DD}}$ can be powered with any logic voltage up to the $V_{D D}$ of the ADC. OGND can be powered with any voltage from ground up to 1 V and must be less than $\mathrm{OV}_{\mathrm{DD}}$. The logic outputs will swing between OGND and OVDD.

Internal Dither

The LTC2207/LTC2206 are 16-bit ADCs with a very linear transfer function; however, at low input levels even slight imperfections in the transfer function will result in unwanted tones. Small errors in the transfer function are usually a result of ADC element mismatches. An optional internal dither mode can be enabled to randomize the input location on the ADC transfer curve, resulting in improved SFDR for low signal levels.

As shown in Figure 15, the output of the sample-and-hold amplifier is summed with the output of a dither DAC. The dither DAC is driven by a long sequence pseudo-random number generator; the random number fed to the dither DAC is also subtracted from the ADC result. If the dither DAC is precisely calibrated to the ADC, very little of the dither signal will be seen at the output. The dither signal that does leak through will appear as white noise. The dither DAC is calibrated to result in less than 0.5 dB elevation in the noise floor of the ADC, as compared to the noise floor with dither off.

Figure 13. Functional Equivalent Block Diagram of Internal Dither Circuit

APPLICATIONS INFORMATION

Figure 14. Descrambling a Scrambled Digital Output

LTC2207/LTC2206

APPLICATIONS INFORMATION

Grounding and Bypassing

The LTC2207/LTC2206 require a printed circuit board witha clean unbroken ground plane; a multilayer board with an internal ground plane is recommended. The pinout of the LTC2207/LTC2206 has been optimized for a flowthrough layout so that the interaction between inputs and digital outputs is minimized. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC.

High quality ceramic bypass capacitors should be used at the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CM}}$, and $0 \mathrm{~V}_{\mathrm{DD}}$ pins. Bypass capacitors must be located as close to the pins as possible. The traces
connecting the pins and bypass capacitors must be kept short and should be made as wide as possible.
The LTC2207/LTC2206 differential inputs should run parallel and close to each other. The input traces should be as short as possible to minimize capacitance and to minimize noise pickup.

Heat Transfer

Most of the heat generated by the LTC2207/LTC2206 is transferred from the die through the bottom-side exposed pad. For good electrical and thermal performance, the exposed pad must be soldered to a large grounded pad on the PC board. It is critical that the exposed pad and all ground pins are connected to a ground plane of sufficient area with as many vias as possible.

APPLICATIONS INFORMATION

Silkscreen Top

Top Side

APPLICATIONS InFORMATION

Inner Layer 4

Inner Layer 5

APPLICATIONS INFORMATION

Bottom Side

Silkscreen Bottom

LTC2207/LTC2206

APPLICATIONS InFORMATION

Ordering Guide:

DEMO BOARD NUMBER	PART NUMBER	RESOLUTION	SPEED	INPUT FREQUENCY	USB I/F BOARD
DC918C-A	LTC2207CUK	16-Bit	105Msps	1 MHz to 70MHz	DC718
DC918C-B	LTC2207CUK	16-Bit	105Msps	70MHz to 140MHz	DC718
DC918C-C	LTC2206CUK	16-Bit	80Msps	1 MHz to 70 MHz	DC718
DC918C-D	LTC2206CUK	16-Bit	80Msps	70MHz to 140MHz	DC718
DC918C-E	LTC2205CUK	16-Bit	65Msps	1 MHz to 70 MHz	DC718
DC918C-F	LTC2205CUK	16-Bit	65Msps	70MHz to 140MHz	DC718
DC918C-G	LTC2204CUK	16-Bit	40Msps	1 MHz to 70 MHz	DC718
DC918C-H	LTC2207CUK-14	14-Bit	105Msps	1 MHz to 70 MHz	DC718
DC918C-I	LTC2207CUK-14	14-Bit	105Msps	70MHz to 140MHz	DC718
DC918C-J	LTC2206CUK-14	14-Bit	80Msps	1 MHz to 70MHz	DC718
DC918C-K	LTC2206CUK-14	14-Bit	80Msps	70MHz to 140MHz	DC718
DC918C-L	LTC2205CUK-14	14-Bit	65Msps	1 MHz to 70MHz	DC718

See Web site for ordering details or contact local sales.

PACKAGE DESCRIPTION
UK Package
48-Lead Plastic QFN ($7 \mathrm{~mm} \times 7 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1704)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

LTC2207/LTC2206

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1747	12-Bit, 80Msps ADC	72dB SNR, 87dB SFDR, 48-Pin TSSOP Package
LTC1748	14-Bit, 80Msps, 5V ADC	76.3dB SNR, 90dB SFDR, 48-Pin TSSOP Package
LTC1749	12-Bit, 80Msps Wideband ADC	Up to 500MHz IF Undersampling, 87dB SFDR
LTC1750	14-Bit, 80Msps, 5V Wideband ADC	Up to 500MHz IF Undersampling, 90dB SFDR
LTC1993-2	High Speed Differential Op Amp	800 MHz BW, 70 dBc Distortion at 70 MHz , 6dB Gain
LTC1994	Low Noise, Low Distortion Fully Differential Input/Output Amplifier/Driver	Low Distortion: -94dBc at 1MHz
LTC2202	16-Bit, 10Msps, 3.3V ADC, Lowest Noise	140mW, 81.6dB SNR, 100dB SFDR, 48-Pin QFN
LTC2203	16-Bit, 25Msps, 3.3V ADC, Lowest Noise	$220 \mathrm{~mW}, 81.6 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN
LTC2204	16-Bit, 40Msps, 3.3V ADC	$480 \mathrm{~mW}, 79 \mathrm{~dB}$ SNR, 100 dB SFDR, 48-Pin QFN
LTC2205	16-Bit, 65Msps, 3.3V ADC	$590 \mathrm{~mW}, 79 \mathrm{~dB} \mathrm{SNR}, 100 \mathrm{~dB}$ SFDR, 48-Pin QFN
LTC2206	16-Bit, 80Msps, 3.3V ADC	$725 \mathrm{~mW}, 77.9 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN
LTC2207	16-Bit, 105Msps, 3.3V ADC	$900 \mathrm{~mW}, 77.9 \mathrm{~dB}$ SNR, 100dB SFDR, 48-Pin QFN
LTC2208	16-Bit, 130Msps, 3.3V ADC, LVDS Outputs	1250mW, 77.7dB SNR, 100dB SFDR, 64-Pin QFN
LTC2220	12-Bit, 170Msps ADC	$890 \mathrm{~mW}, 67.5 \mathrm{~dB}$ SNR, $9 \mathrm{~mm} \times 9 \mathrm{~mm}$ QFN Package
LTC2220-1	12-Bit, 185Msps, 3.3V ADC, LVDS Outputs	910mW, 67.7dB SNR, 80dB SFDR, 64-Pin QFN
LTC2224	12-Bit, 135Msps, 3.3V ADC, High IF Sampling	630mW, 67.6dB SNR, 84dB SFDR, 48-Pin QFN
LTC2249	14-Bit, 80Msps ADC	$230 \mathrm{~mW}, 73 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2250	10-Bit, 105Msps ADC	$320 \mathrm{~mW}, 61.6 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2251	10-Bit, 125Msps ADC	$395 \mathrm{~mW}, 61.6 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2252	12-Bit, 105Msps ADC	$320 \mathrm{~mW}, 70.2 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2253	12-Bit, 125Msps ADC	$395 \mathrm{~mW}, 70.2 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2254	14-Bit, 105Msps ADC	$320 \mathrm{~mW}, 72.5 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC2255	14-Bit, 125Msps, 3V ADC, Lowest Power	395mW, 72.5dB SNR, 88dB SFDR, 32-Pin QFN
LTC2284	14-Bit, Dual, 105Msps, 3V ADC, Low Crosstalk	$540 \mathrm{~mW}, 72.4 \mathrm{~dB} \mathrm{SNR}, 88 \mathrm{~dB} \mathrm{SFDR}, \mathrm{64-Pin} \mathrm{QFN}$
LTC2299	Dual 14-Bit, 80Msps ADC	$230 \mathrm{~mW}, 71.6 \mathrm{~dB}$ SNR, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN Package
LTC5512	DC-3GHz High Signal Level Downconverting Mixer	DC to 3GHz, 21dBm IIP3, Integrated LO Buffer
LTC5514	Ultralow Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain	450 MHz to 1 dB BW, 47 dB OIP3, Digital Gain Control 10.5 dB to 33 dB in $1.5 \mathrm{~dB} /$ Step
LTC5515	1.5 GHz to 2.5GHz Direct Conversion Quadrature Demodulator	High IIP3: 20dBm at 1.9 GHz , Integrated LO Quadrature Generator
LTC5516	800 MHz to 1.5 GHz Direct Conversion Quadrature Demodulator	High IIP3: 21.5dBm at 900MHz, Integrated LO Quadrature Generator
LTC5517	40MHz to 900MHz Direct Conversion Quadrature Demodulator	High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator
LTC5522	600MHz to 2.7GHz High Linearity Downconverting Mixer	4.5V to 5.25 V Supply, 25 dBm IIP3 at 900 MHz , $N F=12.5 \mathrm{~dB}, 50 \Omega$ Single-Ended RF and LO Ports

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
LTC2207IUK\#TRPBF LTC2206IUK\#TRPBF LTC2206CUK\#PBF LTC2206CUK\#TRPBF LTC2207CUK\#TRPBF
LTC2207IUK\#PBF LTC2207CUK\#PBF LTC2206IUK\#PBF DC1058A-B DC1058A-D DC1058A-E DC1058A-C
DC919A-A DC919A-B DC918C-C DC918C-B DC918C-D DC918C-A

