FEATURES

- 1.25Msps Sample Rate
- Power Dissipation: 160mW
- 71 dB S/($\mathrm{N}+\mathrm{D})$ and 82dB THD at Nyquist
- No Pipeline Delay
- Nap (7mW) and Sleep (10 $\mu \mathrm{W}$) Shutdown Modes
- Operates with Internal $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Reference or External Reference
- True Differential Inputs Reject Common Mode Noise
- 20MHz Full Power Bandwidth Sampling
- $\pm 2.5 \mathrm{~V}$ Bipolar Input Range
- 28-Pin SOWide Package

APPLICATI ONS

- Telecommunications
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- High Speed Data Acquisition
- Spectrum Analysis
- Imaging Systems

DESCRIPTIO

The LTC ${ }^{\circledR} 1410$ is a $0.65 \mu \mathrm{~s}, 1.25 \mathrm{Msps}$, 12 -bit sampling A/D converter that draws only 160 mW from $\pm 5 \mathrm{~V}$ supplies. This easy-to-use device includes a high dynamic range sample-and-hold, a precision reference and requires no external components. Two digitally selectable power shutdown modes provide flexibility for low power systems.
The LTC1410's full-scale input range is $\pm 2.5 \mathrm{~V}$. Maximum DCspecifications include ± 1 LSBINL and ± 1 LSBDNL over temperature. Outstanding ACperformance includes 71dB $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ and 82 dB THD at the Nyquist input frequency of 625 kHz .

Theuniquedifferential input sample-and-hold can acquire single-ended or differential input signals up to its 20 MHz bandwidth. The 60dB common mode rejection allows users to eliminateground loops and common modenoise by measuring signals differentially from the source.
The ADChas a $\mu \mathrm{P}$ compatible, 12-bit parallel output port. There is no pipeline delay in the conversion results. A separateconvert start input and adataready signal (BUSY) ease connections to FFOs, DSPs and microprocessors.

TYPICAL APPLICATI On

Complete 1.25 MHz , 12-Bit Sampling A/D Converter

Effective Bits and Signal-to-(Noise + Distortion) vs Input Frequency

ABSO LUTE MAXIMUM RATING S

$A V_{D D}=D V_{D D}=V_{D D}$（Notes 1，2）
Supply Voltage（VD） 6 V
Negative Supply Voltage（VSS）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－6V
Total Supply Voltage（ V_{DD} to V_{SS} ） 12 V
Analog Input Voltage
（Note3） \qquad $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage（Note 4）．．．．．．．．．．．． $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to 10 V
Digital Output Voltage．．．．．．．．．．．．．．．．．．．-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation．．500mW
Operating Temperature Range
LTC1410C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC14101 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range ．．．．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature（Soldering， 10 sec ） \qquad $300^{\circ} \mathrm{C}$

PACKAG E／ORDER INFO RMATIO

Consult factory for Military grade parts．

CO NVERTER CHARACTERISTICS
The © denotes specifications which apply over the full operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．With Internal Reference（Notes 5，6）

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Resolution（No Missing Codes）		\bullet	12			Bits
Integral Linearity Error	（Note 7）	\bullet		± 0.3	± 1	LSB
Differential Linearity Error		\bullet		± 0.3	± 1	LSB
Offset Error	（Note 8）	\bullet		± 2	$\begin{aligned} & \pm 6 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Full－Scale Eror					± 15	LSB
Full－Scale Tempco	l OU（R⿴囗十）$=0$	\bullet		± 15		ppm／${ }^{\circ} \mathrm{C}$

AnALOG InPUT The o denotes specifications which apply over the full operating temperature range，otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．（Note 5）

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
$\mathrm{V}_{\text {IN }}$	Analog Input Range（Note 9）	$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{V}_{\text {SS }} \leq-4.75 \mathrm{~V}$	\bullet	± 2.5		V
I_{IN}	Analog Input Leakage Ourrent	$\overline{\mathrm{CS}}=$ High	\bullet		± 1	$\mu \mathrm{A}$
G_{N}	Analog Input Capacitance	Between Conversions During Conversions		$\begin{array}{r} 17 \\ 5 \\ \hline \end{array}$		pF
$\mathrm{t}_{\text {AOQ }}$	Sample－and－Hold Acquisition Time		\bullet	50	100	ns
$\mathrm{t}_{\text {AP }}$	Sample－and－Hold Aperture Delay Time			－1．5		ns
$\mathrm{t}_{\text {jitter }}$	Sample－and－Hold Aperture Delay Time Jitter			5		$\mathrm{ps}_{\text {RMS }}$
OMRR	Analog Input Common Mode Rejection Ratio	$-2.5 \mathrm{~V}<\left(-\mathrm{A}_{\text {IN }}=\mathrm{A}_{\text {IN }}\right)<2.5 \mathrm{~V}$		60		dB

DY@AMIC ACCURACY The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{S /(N+D)}$	Signal-to-(Noise + Distortion) Ratio	100kHz Input Signal (Note 12) 600kHz Input Signal (Note 12)	\bullet	$\begin{aligned} & \hline 70 \\ & 68 \end{aligned}$	$\begin{aligned} & 72.5 \\ & 71.0 \end{aligned}$		dB dB
THD	Total Harmonic Distortion	100kHz Input Signal, Frst 5 Harmonics 600 kHz Input Signal, Frst 5 Harmonics	\bullet		-85	-74	dB dB
	Peak Harmonic or Spurious Noise	600kHz Input Signal	\bullet		-84	-74	dB
IMD	Intermodulation Distortion	$\mathrm{f}_{\mathrm{IN} 1}=29.37 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN} 2}=32.446 \mathrm{kHz}$			-84		dB
	Full Power Bandwidth				20		MHz
	Full Linear Bandwidth	$(\mathrm{S} /(\mathrm{N}+\mathrm{D}) \geq 68 \mathrm{~dB})$			2.5		MHz

IПTER@AL REFERE@CE CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {RF }}$ Output Voltage	lar = 0	2.480	2.500	2.520	V
VRE Output Tempco	lour $=0$		± 15		ppm/ $/{ }^{\circ} \mathrm{C}$
V_{R} Line Regulation	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \\ & -5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-4.75 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{LSB} / \mathrm{V} \\ & \mathrm{LSB} / \mathrm{V} \end{aligned}$
$\mathrm{V}_{\text {REF }}$ Otput Resistance	$\|\mathrm{lar}\| \leq 0.1 \mathrm{~mA}$		2		$\mathrm{k} \Omega$
OOMP Output Voltage	lour $=0$		4.06		V

DIGITALIMPUTS AND DIGITALOUTPUTS The \bullet denotes specifications which apply over the full

 operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | $\mathrm{V}_{\mathrm{DD}}=5.25 \mathrm{~V}$ | \bullet | 2.4 | | | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage | $V_{D D}=4.75 \mathrm{~V}$ | \bullet | | | 0.8 | V |
| $\mathrm{IIN}^{\text {N }}$ | Digital Input Ourrent | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{DD} | \bullet | | | ± 10 | $\mu \mathrm{A}$ |
| G_{N} | Digital Input Capacitance | | | | 5 | | pF |
| V_{OH} | High Level Output Voltage | $\begin{aligned} \hline \mathrm{V}_{\mathrm{DD}} & =4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{O}} & =-10 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =-200 \mu \mathrm{~A} \end{aligned}$ | \bullet | 4.0 | 4.5 | | V |
| v_{a} | Low Level Output Voltage | $\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =4.75 \mathrm{~V} \\ \mathrm{I}_{\mathrm{O}} & =160 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =1.6 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.05 \\ & 0.10 \\ & \hline \end{aligned}$ | 0.4 | V |
| Ioz | High-Z Output Leakage D11 to D0 | $\mathrm{V}_{\text {Or }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{CS}}$ High | \bullet | | | ± 10 | $\mu \mathrm{A}$ |
| COZ | High-Z Output Capacitance D11 to D0 | $\overline{\text { CS }}$ High (Note 9) | \bullet | | | 15 | pF |
| ISOURCE | Output Source Ourrent | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ | | | -10 | | mA |
| $\mathrm{I}_{\text {SINK }}$ | Output Sink Ourrent | $\mathrm{V}_{\text {OU }}=\mathrm{V}_{\mathrm{DD}}$ | | | 10 | | mA |

PO WER REQ UIREMEกTS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{DD}	Positive Supply Voltage	(Notes 10, 11)		4.75		5.25	V
$\mathrm{V}_{\text {SS }}$	Negative Supply Voltage	(Note 10)		-4.75		-5.25	
I_{DD}	Positive Supply Current Nap Mode Sleep Mode	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\overline{\mathrm{CONVST}}=5 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=5 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 12 \\ 1.5 \\ 1 \end{gathered}$	$\begin{aligned} & 16 \\ & 2.3 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
$\overline{I_{S S}}$	Negative Supply Ourrent Nap Mode Sleep Mode	$\begin{aligned} & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\overline{\mathrm{OONVST}}=5 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=5 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 20 \\ 10 \\ 1 \end{gathered}$	$\begin{aligned} & 30 \\ & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$

POWER REOUIEMENTS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$P_{\text {D }}$	Power Dissipation Nap Mode Sleep Mode	$\begin{aligned} & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=5 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=0 \mathrm{~V}, \mathrm{NAP} / \overline{\mathrm{SLP}}=0 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 160 \\ 7.5 \\ 0.01 \end{array}$	$\begin{gathered} 230 \\ 12 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$ mW

TMIीG CHARACTERISTICS The e denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MI	TYP	MAX	UNITS
$\mathrm{f}_{\text {SAMPLEEMAX }}$	Maximum Sampling Frequency		\bullet	1.2			MHz
toonv	Conversion Time		\bullet		650	750	ns
$\mathrm{t}_{\text {AOQ }}$	Acquisition Time		\bullet		50	100	ns
$t_{\text {AOC+CONV }}$	Throughput Time (Acquisition + Conversion)		\bullet			800	ns
t_{1}	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	(Notes 9, 10)	\bullet	0			ns
t2	$\overline{\text { CS }} \downarrow$ to $\overline{\text { CONVST }} \downarrow$ Setup Time	(Notes 9, 10)	\bullet	10			ns
t_{3}	NAP/ $\overline{S L P} \downarrow$ to $\overline{\text { SHDN }} \downarrow$ Setup Time	(Notes 9, 10)	\bullet	10			ns
t_{4}	$\overline{\text { SHDN }} \uparrow$ to $\overline{O O N V S T} \downarrow$ Wake-Up Time	(Note 10)			200		ns
t5	$\overline{\text { CONVSTL }}$ Low Time	(Notes 10, 11)	\bullet	40			ns
t_{6}	$\overline{\text { OONVST }}$ to $\overline{\text { BUSY }}$ Delay	$\mathrm{G}=25 \mathrm{pF}$	\bullet		10	50	ns
t_{7}	Data Ready Before $\overline{\mathrm{BUSY}} \uparrow$		\bullet	20 15	35		ns
t_{8}	Delay Between Conversions	(Note 10)	\bullet	40			ns
t_{9}	Wait Time $\overline{\mathrm{RD}} \downarrow$ After $\overline{\mathrm{BUSY}} \uparrow$	(Note 10)	\bullet	-5			ns
t_{10}	Data Access Time After $\overline{\mathrm{RD}} \downarrow$	$\begin{aligned} & G=25 p F \\ & G=100 \mathrm{pF} \end{aligned}$	\bullet -		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 25 \\ & 35 \\ & 35 \\ & 50 \end{aligned}$	ns ns ns ns
t_{11}	Bus Relinquish Time	Commercial Industrial	\bullet		8	20 25 30	ns ns ns
t_{12}	$\overline{\mathrm{RD}}$ Low Time		\bullet	t_{10}			ns
t_{13}	$\overline{\text { OONVST High Time }}$		\bullet	40			ns
t_{14}	Aperture Delay of Sample-and-Hold				-1.5		ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND, OGND and AGND wired together unless otherwise noted.
Note 3: When these pin voltages are taken below $\mathrm{V}_{S S}$ or above V_{DD}, they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below V_{SS} or above V_{DD} without latchup.
Note 4: When these pin voltages are taken below V_{SS}, they will be clamped by internal diodes. This product can handle input currents greater than 100 mA below V_{SS} without latchup. These pins are not clamped to V_{DD}.
Note 5: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1.25 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise specified.
Note 6: Linearity, offset and full-scale specifications apply for a singleended $+A_{\text {IN }}$ input with $-A_{\text {IN }}$ grounded.

Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 8: Bipolar offset is the offset voltage measured from -0.5 LSB when the output code flickers between 000000000000 and 111111111111.
Note 9: Guaranteed by design, not subject to test.
Note 10: Recommended operating conditions.
Note 11: The falling CONVST edge starts a conversion. If $\overline{\text { ONVST }}$ returns high at a critical point during the conversion it can create small errors. For best results ensure that OONVST returns high either within 425ns after the start of the conversion or after $\overline{\mathrm{BUSY}}$ rises.
Note 12: Signal-to-noise ratio (SNR) is measured at 100 kHz and distortion is measured at 600 kHz . These results are used to calculate signal-to-noise plus distortion (SINAD).

TYPICAL PERFO RMAOCE CHARACTERISTICS

1410601
Spurious-Free Dynamic Range vs Input Frequency

Integral Nonlinearity vs
Output Code

Signal-to-Noise Ratio vs Input Frequency

410 G02

1410 G05
Power Supply Feedthrough vs Ripple Frequency

1410 G03
Differential Nonlinearity vs Output Code

Input Common Mode Rejection vs Input Frequency

LTC1410

PIn FUnCTIO ns

+ AIN (Pin 1): Positive Analog Input, $\pm 2.5 \mathrm{~V}$.
- AIN (Pin 2): Negative Analog Input, $\pm 2.5 \mathrm{~V}$.
$\mathrm{V}_{\text {REF }}$ (Pin 3): 2.50V Reference Output.
REFCOMP (Pin 4): 4.06V Reference Bypass Pin. Bypass to AGND with 10μ Ftantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic.
AGND (Pin 5): Analog Ground.
D11 to D4 (Pins 6 to 13): Thre-State Data Outputs.
DGND (Pin 14): Digital Ground for Internal Logic. Tie to AGND.
D3 to D0 (Pins 15 to 18): Three-State Data Outputs.
OGND (Pin 19): Digital Ground for Output Drivers. Tie to AGND.
NAP/(SLP (Pin20): Power Shutdown Mode. Selects the mode invoked by the SHDN pin. Low selects Sleep mode and high selects quick wake up Nap mode.
$\overline{\text { SHDN (Pin 21): Power Shutdown Input. A low logic }}$ level will invoke the Shutdown mode selected by the NAP/SLP pin.
$\overline{\mathrm{RD}}$ (Pin 22): Read Input. This enables the output drivers when $\overline{\mathrm{CS}}$ is low.
CONVST (Pin 23): Conversion Start Signal. This active low signal starts a conversion on its falling edge.
$\overline{\mathrm{CS}}$ (Pin 24): The Chip Select input must be low for the ADCto recognize $\overline{\text { OONVST }}$ and $\overline{\mathrm{RD}}$ inputs.
$\overline{\text { BUSY }}$ (Pin 25): The $\overline{\mathrm{BUSY}}$ output shows the converter status. It is low when a conversion is in progress. Data valid on the rising edge of BUSY.
V_{SS} (Pin 26): -5 V Negative Supply. Bypass to AGND with $10 \mu \mathrm{~F}$ tantalum in parallel 0.1μ F ceramic.
DV ${ }_{\text {DD }}$ (Pin 27): 5V Positive Supply. Short to Pin 28.
AV ${ }_{\text {DD }}$ (Pin 28): 5V Positive Supply. Bypass to AGND with $10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic.

FUnCTIO NAL BLO CK DIAG RAM

TEST CIRCUITS

Load Circuits for Access Timing

(A) $\mathrm{Hi}-\mathrm{Z} \mathrm{TOV}_{\mathrm{OH}} A N D V_{\mathrm{O}} \mathrm{TOV}_{\mathrm{OH}}$

(B) $\mathrm{Hi}_{\mathrm{Z}} \mathrm{Z} \mathrm{TO}_{\mathrm{O}} \mathrm{AND}_{\mathrm{O}_{\mathrm{H}}} \mathrm{TOV}_{\mathrm{a}}$

Load Circuits for Output Float Delay

(A) $\mathrm{V}_{\mathrm{OH}} \mathrm{TOHi}-\mathrm{Z}$

(B) $\mathrm{VaL}_{\mathrm{a}} \mathrm{TOHi}-\mathrm{Z}$

1410 TOO2

APPLICATIO NS INFO RMATIO n

CONVERSION DETAILS

TheLTC1410 uses a successive approximation algorithm and an internal sample-and-hold circuit to convert an analog signal to a 12-bit parallel output. The ADC is complete with a precision reference and an internal clock. The control logic provides easy interface to microprocessors and DSPs. (Please refer to the Digital Interface section for the data format.)
Conversion start is controlled by the $\overline{\mathrm{CS}}$ and CONVST inputs. At the start of the conversion the successive approximation register (SAR) is reset. Once a conversion cycle has begun it cannot be restarted.
During the conversion, the internal differential 12-bit capacitive DAC output is sequenced by the SAR from the Most Significant Bit (MSB) to the Least Significant Bit (LSB). Referring to Figure 1, the $+A_{I_{N}}$ and $-A_{I_{N}}$ inputs are connected to the sample-and-hold capacitors (CSAMPLE) during the acquire phase and the comparator offset is nulled by the zeroing switches. In this acquire phase, a minimum duration of 100 ns will provide enough time for the sample-and-hold capacitors to acquire the analog signal. During the convert phase the comparator zeroing switches open, putting the comparator into compare mode. Theinput switches connect the SAMPLE $^{\text {capacitors }}$ to ground, transferring thedifferential analog input charge
onto the summing junctions. This input charge is successively compared with the binarily-weighted charges supplied by the differential capacitive DAC. Bit decisions are made by the high speed comparator. At the end of a conversion, the differential DACoutput balances the $+\mathrm{A}_{\text {IN }}$ and - A IN input charges. The SAR contents (a 12-bit data word) which represent thedifference of $+A_{\text {IN }}$ and $-A_{\text {IN }}$ are loaded into the 12-bit output latches.

Figure 1. Simplified Block Diagram

APPLICATIO NS INFO RMATIO n

DYNAMIC PERFORMANCE

The LTC1410 has excellent high speed sampling capability. Fast Four Transform (円T) test techniques are used to test the ADC sfrequency response, distortion and noiseat the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental.

Figure 2a. LTC1410 Nonaveraged 4096 Point FFT, 100kHz Input

Figure 2b. LTC1410 Nonaveraged 4096 Point FFT, 600kHz Input

Signal-to-Noise Ratio

TheSignal-to-Noiseplus Distortion ratio [S/(N+D)] is the ratio between theRMSamplitudeof thefundamental input frequency to the RMS amplitude of all other frequency components at the ADCoutput. Theoutput is band limited
to frequencies from aboveDCand below half the sampling frequency. Fgures 2 a and 2 b shows a typical spectral content with a 1.25 MHz sampling rate for 100 kHz and 600 kHz inputs. The dynamic performance is excellent for input frequencies up to the Nyquist limit of 625 kHz and beyond.

Effective Number of Bits

The Effective Number of Bits (ENOBs) is a measurement of the resolution of an ADC and is directly related to the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ by the equation:

$$
N=[S /(N+D)-1.76] / 6.02
$$

where N is the effective number of bits of resolution and $S /(N+D)$ is expressed in $d B$. At the maximum sampling rate of 1.25MHztheLTC1410 maintains very good ENOBs up to the Nyquist input frequency of 625 kHz and beyond. Refer to Fgure 3.

LTC1410 •TA02
Figure 3. Effective Bits and Signal/(Noise + Distortion) vs Input Frequency

Total Harmonic Distortion (THD)

Total harmonic distortion is theratio of theRMSsum of all harmonics of theinput signal tothefundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
T H D=20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+\ldots V_{n}^{2}}}{V_{1}}
$$

APPLICATIO NS INFORMATIO

where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{n} are the amplitudes of the second through nth harmonics. THDvs Input Frequency is shown in Fgure 4. The LTC1410 has good distortion performance up to the Nyquist frequency and beyond.

1410 ©03
Figure 4. Distortion vs Input Frequency

Intermodulation Distortion (IMD)

If the ADCinput signal consists of morethan one spectral component, the ADC transfer function nonlinearity can produce Intermodulation Distortion in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.
If two pure sinewaves of frequencies f_{a} and f_{b} areapplied to the ADC input, nonlinearities in the ADCtransfer function can create distortion products at the sum and difference frequencies of $\mathrm{mf}_{\mathrm{a}} \pm \mathrm{nf}_{\mathrm{b}}$, where m and $\mathrm{n}=0,1,2,3$, etc. For example, the 2nd order IMD terms include $\left(f_{a}+f_{b}\right)$. If thetwo input sinewaves areequal in magnitude, the value (in decibels) of the 2nd order IMD products can be expressed by the following formula:

$$
\operatorname{IMD}\left(f_{a}+f_{b}\right)=20 \log \frac{\text { Amplitude at }\left(f_{a} \pm f_{b}\right)}{\text { Amplitude at } f_{a}}
$$

Figure 5. Intermodulation Distortion Plot

Peak Harmonic or Spurious Noise

The peak harmonic or spurious noise is the largest spectral component excluding the input signal and DC. This value is expressed in decibel relative to the RMS value of a full-scale input signal.

Full Power and Full Linear Bandwidth

Thefull power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full-scale input signal.
The full linear bandwidth is the input frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ has dropped to 68dB (11 effectivebits). The LTC1410 has been designed to optimize input bandwidth, allowing the ADC to undersample input signals with frequencies above the converter's Nyquist frequency. The noise floor stays very low at high frequencies; $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ does not become dominated by distortion until frequencies far beyond Nyquist.

Driving the Analog Input

Thedifferential analog inputs of theLTC1410 are easy to drive. The inputs may be driven differentially or as a single-ended input (i.e., the-A In input is grounded). The $+A_{\text {IN }}$ and -A $A_{I N}$ inputs are sampled at the same instant. Any unwanted signal that is common mode to both inputs will bereduced by the common mode rejection of the sample-and-hold circuit. The inputs draw only one small current spike while charging the sample-and-hold

APPLICATIO NS INFO RMATIO

capacitors at the end of conversion. During conversion theanalog inputs draw only asmall leakage current. If the source impedance of the driving circuit is low then the LTC1410 inputs can bedriven directly. As sourceimpedanceincreases so will acquisitiontime(seeFgure6). For minimum acquisition time with high source impedance, a buffer amplifier should be used. The only requirement is that the amplifier driving the analog input(s) must settleafter thesmall current spikebeforethenext conversion starts (settling time must be 100ns for full throughput rate).

Figure 6. Acquisition Time vs Source Resistance

Choosing an input amplifier is easy if afew requirements are taken into consideration. Frst, choose an amplifier that has a low output impedance ($<100 \Omega$) at the closedloop bandwidth frequency. For example, if an amplifier is used in a gain of +1 and has a closed-loop bandwidth of 50 MHz , then the output impedance at 50 MHz must be less than 100Ω. The second requirement is that the closed-loop bandwidth must be greater than 20 MHz to ensureadequate small-signal settling for full throughput rate. If slower op amps are used, more settling time can beprovided by increasing thetimebetween conversions. Suitable devices capable of driving the ADCs inputs include the LT ${ }^{\circledR}$ 1360, LT1220, LT1223, LT1224 and LT1227 op amps.
The noise and the distortion of the input amplifier must also be considered since they will add to the LTC1410 noise and distortion. The small-signal bandwidth of the
sample-and-holdcircuit is 20 MHz . Any noisethat is present at the analog inputs will be summed over this entire bandwidth. Noisy input circuitry should befiltered prior to the analog inputs to minimize noise. A simple 1-pole RC filter is usually sufficient. For example, Fgure 7 shows a 1000 pFcapacitor from + A IN to ground and a 100Ω source resistor will limit the input bandwidth to 1.6 MHz . Simple RCfilters work well for ACapplications, but they will limit thetransient response. For full speed operation, amplifiers with fast settling and low noise should be chosen.

Figure 7. RC Input Filter

Internal Reference

The LTC1410 has an on-chip, temperature compensated, curvature corrected, bandgap reference which is factory trimmedto 2.500 V . It is connected internally to areference amplifier and is available at $\mathrm{V}_{\text {RE }}$ (Pin 3). See Fgure 8a A 2 k resistor is in series with the output so that it can be

Figure 8a. LTC1410 Reference Circuit

APPLICATIO NS INFO RMATIO n

easily overdriven in applications where an external reference is required. The reference amplifier provides buffering between the internal referenceand the capacitiveDAC. The reference amplifier compensation pin REFCOMP (Pin 4), must bebypassed with acapacitor to ground. The reference amplifier is stable with capacitors of $1 \mu \mathrm{~F}$ or greater. For the best noise performance, a 10 μ Ftantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic is recommended.
The V_{RE} pin can be driven with an external reference (Fgure 8b), a DAC or other means to provide input span adjustment. The $\mathrm{V}_{\text {RE }}$ should bekept in the range of 2.25 V to 2.75 V for specified linearity.

Figure 8b. Using the LT1019-2.5 as an External Reference

Full-Scale and Offset Adjustment

Figure 9 shows the ideal input/output characteristics for theLTC1410. Thecodetransitions occur midway between successive integer LSB values (i.e., - FS +0.5 LSB , $-F S+1.5 \mathrm{LSB},-\mathrm{FS}+2.5 \mathrm{LSB}, \ldots \mathrm{FS}-1.5 \mathrm{LSB}$, FS - 0.5LSB). The output is two's complement binary with $1 \mathrm{LSB}=[(+\mathrm{FS})-(-\mathrm{FS})] / 4096=5 \mathrm{~V} / 4096=1.22 \mathrm{mV}$.
In applications where absolute accuracy is important, offset and full-scaleerrors can be adjusted to zero. Offset error must be adjusted before full-scale error. Fgure 10 shows the extra components required for full-scale error adjustment. Zero offset is achieved by adjusting theoffset applied to the $-A_{\text {IN }}$ input. For zero offset error apply -0.61 mV (i.e., -0.5 LSB) at $+\mathrm{A}_{\mathrm{iN}}$ and adjust the offset at the-A Ain input until theoutput codeflickers between 0000 00000000 and 11111111 1111. For full-scale adjustment, an input voltage of 2.49817 V (FS -1.5 LSBS) is
applied to $A_{\text {IN }}$ and R2 is adjusted until the output code flickers between 011111111110 and 011111111111.

Figure 9. LTC1410 Transfer Characteristics

Figure 10. Offset and Full-Scale Adjust Circuit

BOARD LAYOUT AND BYPASSING

Wire wrap boards are not recommended for high resolution or high speed A/D converters. To obtain the best performance from the LTC1410, a printed circuit board with ground plane is required. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. Particular care should be taken not to run any digital track alongside an analog signal track or underneath the ADC. The analog input should be screened by AGND.

APPLICATIO NS INFO RMATIO

High quality tantalum and ceramic bypass capacitors should be used at the $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$ and REFOMP pins as shown in the Typical Application on the first page of this datasheet. Bypass capacitors must be located as close to the pins as possible. The traces connecting the pins and bypass capacitors must bekept short and should be made as wide as possible.
The LTC1410 has differential inputs to minimize noise coupling. Common mode noise on the $+A_{I N}$ and $-A_{I N}$ leads will be rejected by the input CMRR. The-A A input can be used as a ground sense for the + A IN input; the LTC1410 will hold and convert the difference voltage between $+A_{\text {IN }}$ and $-A_{I N}$. Theleadsto $+A_{\text {IN }}($ Pin 1$)$ and $-A_{I N}$ (Pin2) should bekept as short as possible. In applications wherethis is not possible, the $+A_{\text {IN }}$ and - A Antraces should be run side by side to equalize coupling.
A single point analog ground separate from the logic system ground should be established with an analog ground planeat Pin 5(AGND) or as closeas possibletothe ADC. Pin 14 and Pin 19 (ADCs DGND) and all other analog grounds should beconnected to this singleanalog ground point. No other digital grounds should beconnected tothis analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible. In applications where the

ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in the conversion results. These errors are due tofeedthroughfromthemicroprocessor tothesuccessive approximation comparator. The problem can be eliminated by forcing the microprocessor into a wait state during conversion or by using threstate buffers to isolate the ADCdata bus.

DIGITAL INTERFACE

The A/D converter is designed to interface with microprocessors as a memory mapped device. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ control inputs are common to all peripheral memory interfacing. A separate CONVST is used to initiate a conversion.

Internal Clock

TheA/Dconverter has an internal clock that eliminates the need of synchronization between the external clock and the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals found in other ADCs. The internal clock is factory trimmed to achieve a typical conversion time of $0.65 \mu \mathrm{~s}$ and a maximum conversion time over the full operating temperature range of $0.75 \mu \mathrm{~s}$. No external adjustments are required. The guaranteed maximum acquisition time is 100 ns . In addition, throughput time of 800 ns and a minimum sampling rate of 1.25 Msps is guaranteed.

Figure 11. Power Supply Grounding Practice

APPLICATIO NS INFO RMATIO \cap

Power Shutdown

The LTC1410 provides two power shutdown modes, Nap and Sleep, to save power during inactive periods. The Nap modereduces thepower by 95\% and leaves only the digital logic and referencepowered up. Thewake-uptime from Nap to active is 200 ns . In Sleep mode all bias currents are shut down and only leakage current re-mains-about $1 \mu \mathrm{~A}$. Wake-up time from Sleep mode is

Figure 12a. NAP/SLP to $\overline{\text { SHDN }}$ Timing

1410 F12b

Figure 12b. $\overline{\text { SHDN }}$ to $\overline{\text { CONVST }}$ Wake-Up Timing
much slower since the reference circuit must power up and settle to 0.01% for full 12 -bit accuracy. Sleep mode wake up time is dependent on the value of the capacitor connected to the RECOMP (Pin 4). The wake-up time is 10 ms with the recommended $10 \mu \mathrm{~F}$ capacitor.
Shutdown is controlled by Pin 21 (SHDN), the ADC is in shutdown when it is low. The shutdown mode is selected with Pin 20 (NAP/SLP); high selects Nap.

Figure 13. $\overline{\text { CS }}$ to CONVST Setup Timing

Timing and Control

Conversion start and data read operations are controlled by three digital inputs: $\overline{\text { CONVST, }} \overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$. Alogic "0" applied to theOONVST pin will start aconversion after the ADChas been selected (i.e., $\overline{\mathrm{C}}$ is low). Once initiated, it cannot be restarted until the conversion is complete. Converter status is indicated by the BUSY output. BUSY is low during a conversion.

Figures 14 through 18 show several different modes of operation. In modes 1a and 1b (Fgures 14 and 15) $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both tied low. The falling edge of $\overline{\mathrm{OONVST}}$ startstheconversion. Thedataoutputs arealways enabled and data can be latched with the $\overline{B U S Y}$ rising edge. Mode 1a shows operation with a narrow logic low CONVST pulse. Mode 1b shows anarrow logic high CONVST pulse.
In mode 2 (Fgure 16) $\overline{\mathrm{CS}}$ is tied low. The falling edge of CONVST signal again starts the conversion. Data outputs areinthree-state until read by theMPUwith the $\overline{\mathrm{RD}}$ signal. Mode 2 can be used for operation with a shared MPU databus.
In slow memory and ROM modes (Fgures 17 and 18) $\overline{\mathrm{CS}}$ istied low and $\overline{C O N V S T}$ and $\overline{\mathrm{RD}}$ aretied together. TheMPU starts the conversion and reads the output with the RD signal. Conversions are started by the MPU or DSP (no external sample clock).

In slow memory modetheprocessor applies alogic low to RD (= CONVST), starting the conversion. BUSY goes low forcing the processor into a wait state. The previous conversion result appears on the data outputs. When the conversion is complete, the new conversion results appear on the data outputs; BUSY goes high releasing the processor and the processor takes RD (= $\overline{\text { CONVST }}$) back high and reads the new conversion data
In ROM mode, the processor takes $\overline{\mathrm{RD}}(=\overline{\mathrm{OONVST}})$ low, starting aconversion and reading theprevious conversion result. After theconversion is complete, theprocessor can read the new result and initiate another conversion.

APPLICATIO NS INFO RMATIO n

Figure 14．Mode 1a．CONVST Starts a Conversion．Data Outputs Always Enabled （CONVST $=$ ป ゝ 〕）

Figure 15．Mode 1b．CONVST Starts a Conversion．Data Outputs Always Enabled （CONVST $=$ 几ـ 几ـ 几）

Figure 16．Mode 2．CONVST Starts a Conversion．Data is Read by $\overline{\mathrm{RD}}$

APPLICATI ONS INFO RMATIO

Figure 17. Slow Memory Mode Timing

Figure 18. ROM Mode Timing

PACKAG E DESCRIPTIO П Dimensions in inches (millimeters) unless otherwise noted.

28-Lead Plastic SSOP (0.209)
(LTCDWG\# 05-08-1640)

PACKAG E DESCRIPTIO ${ }^{\text {Dimensions in incheses millimeters unness athemisise onoted. }}$

RELATED PARTS

12-Bit Sampling A/D Converters

PART NUMBER	DESCRIPTION	COMMENTS
LTC1273/75/76	Complete 5V Sampling 12-Bit ADCs with 70dB SINAD at Nyquist	Lower Power and Cost Effective for fsAMPLE \leq 300ksps
LTC1274/77	Low Power 12-Bit ADCs with Nap and Sleep Mode Shutdown	Lowest Power for fsAMPLE \leq 100ksps
LTC1278/79	High Speed Sampling 12-Bit ADCs with Shutdown	Cost Efective 12-Bit ADCs — Best for 2-Pair HDSL, fsAMPLE $^{2} 500 \mathrm{ksps} / 600 \mathrm{ksps}$
LTC1282	Complete 3V 12-Bit ADCs with 12mW Power Dissipation	Fully Specified for 3V-Powered Applications, f fAMPLE $\leq 140 \mathrm{ksps}$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
DC131B

